Out-of-field dose reconstructions for studies of health risks following photon radiotherapy when DICOM-RT are NOT available
DISCLAIMER: This presentation was prepared by David Borrego in his personal capacity. The opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.
Agenda

1. Kaiser Breast cancer survivors study
 - Overview of cohort
 - Radiogenic health risks of interest
2. Exposure assessment goals
3. Obstacles…
Kaiser case-control study of breast cancer patients

- Substantial improvements in breast cancer survival, combined with increasing incidence rates have resulted in **3 million breast cancer survivors in the US**; 20% of all cancer survivors.

- The long-term health of these women is a clinical and public health concern, with an estimated **10% developing a second cancer by ten years after diagnosis**.

- Radiotherapy results in a reduction of breast cancer mortality 15 years after treatment; However, studies also demonstrated that **radiotherapy increases cardiovascular mortality and second cancer risks**, particularly for women with left-sided breast cancer.
Kaiser case-control study of breast cancer patients

- We aim to examine the relationship between radiotherapy techniques and risks for 2nd cancers and cardiovascular events using an established cohort.

- A nested CC study from ~12,000 breast patients treated at three Kaiser centers
 - Over 9k treatment summaries abstracted thus far from NW, CO
 - Treated between 1990 to 2010
Dosimetry for epidemiologic purposes

- Radiation doses received by individuals from medical exposures are often not recorded and must be reconstructed from exposure information.

- Radiation doses must be **specific to each organ under study**
 - Contralateral breast, lung, heart, and esophagus.

- To make realistic estimates of organ doses requires an understanding of the clinical exposure, radiologic technology and the physics it is based on.
Dosimetry for epidemiologic purposes

- **Individualized dosimetry is not possible** due to limited resources and a lack of information in the medical records.
Dosimetry for epidemiologic purposes

- **Individualized dosimetry is not possible** due to limited resources and a lack of information in the medical records.

- We must therefore use **averaged imaging parameters** that are collectively defined from measurement data, computational modeling, literature, and RT treatment summaries (no DICOM-RT).
Existing dosimetry methods for radiotherapy patients

- MD Anderson Cancer Center method\(^1\)
 - Comprehensive 3D dose measurements within a water phantom
 - Age-specific computational phantoms superimposed on the dose matrices
 - Structure of the phantoms based on anatomy textbooks

- Limited to conventional radiotherapy techniques

Existing dosimetry methods for radiotherapy patients

- MD Anderson Cancer Center method
 - Comprehensive 3D dose measurements within a water phantom
 - Age-specific computational phantoms superimposed on the dose matrices
 - Structure of the phantoms based on anatomy textbooks

- Limited to conventional radiotherapy techniques

Dosimetry of Kaiser case-control study

- In this study, **CT images are not retrievable** from the hospitals and we know dose distribution and treatment planning to be highly affected by patient morphometry.

- We established a **surrogate patient cohort for dosimetry** with the University of Michigan.

- We will then use that information in conjunction with the radiotherapy summaries as the basis for our calculations using NCIRT.
Dosimetry of Kaiser case-control study

- In this study, CT images are not retrievable from the hospitals and we know dose distribution and treatment planning to be highly affected by patient morphometry.

- We established a surrogate patient cohort for dosimetry with the University of Michigan

- We will then use that information in conjunction with the radiotherapy summaries as the basis for our calculations using NCIRT

<table>
<thead>
<tr>
<th>Dosimetry Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient anatomy</td>
</tr>
<tr>
<td>Treatment plans</td>
</tr>
<tr>
<td>Dosimetry method</td>
</tr>
</tbody>
</table>
Dosimetry of Kaiser case-control study

- 200 Female breast cancer patients (100 left breast, 100 right breast) – stratified by BMI
- Treated at the University of Michigan, Ann Arbor, MI
- Between 2014 – 2015
Dosimetry of Kaiser case-control study

- Treatment planning data (beam energy, prescriptions, gantry angle, collimator angle and sizes, MLC block shapes, 3D dose distribution)
Dosimetry of Kaiser case-control study

- Radiation doses must be **specific to each organ under study**
- Other organs (out-of-field) of based on second cancers reported in cohort:
 - Colon
 - Ovaries
 - Corpus uteri
 - And pancreas… for now

Dosimetry of Kaiser case-control study

- **Varian Clinac LINAC: 6MV, 16(15)MV**
 - Two field tangents w/ MLC heart-blocks
 - Field-in-field technique (instead of physical wedges)
 - Dose calculations were done with Varian AAA v13.6 algorithm

- **Treatment Planning System (Varian AAA v13.6 algorithm)**
 - Several papers indicating TPS not accurate for **out-of-field** and **heterogeneous** regions
 - TPS reported to underestimate measurements or Monte Carlo dose1,2

Needs of Kaiser case-control study

- Clinical beam data and measurements to validate and implement a virtual source model of clinical accelerators
 - Among the CC cohort, ~30% of patients treated with 4 MV and ~10% at 23 MV
 - Phase-space data files (IAEA-compliant phase space calculations)
- Modeling of radiotherapy compensators and wedges
 - Used in ~50% of cohort and of these we have wedge information for 75%
 - Physical wedges, enhanced dynamic wedges, virtual wedge (Siemens)
- Special treatment techniques (e.g., IMRT in later years)