Introduction to MR-Guided Radiation Therapy and the Added Value of Volumetric Dosimeters

Hannah J. Lee, PhD
Postdoctoral Fellow
UT MD Anderson Cancer Center

April 16, 2018
Background

- Evolving technologies
Background

- Evolving technologies
- One thing in common: fancier image-guidance
Background

- Target uncertainty in radiation therapy
 - Setup variation
 - Internal organ displacement
 - Volume change and deformation
 - Interfraction and intrafraction changes
 - Etc...

Interfraction Variability

Setup Error

- Patient positioning
 - Rotation
 - Weight change
 - Skin mark shifts
 - Volume changes
 - Deformation
 - Bladder/rectum volumes
 - Bowel gas motion
 - Peristalsis
 - Respiration
 - Cardiac motion

Intrafraction Variability

Organ Motion

Dosimetric Challenges

Volumetric Dosimeters

Moving Forward
Background

- Target uncertainty in radiation therapy
 - Setup variation
 - Internal organ displacement
 - Volume change and deformation
 - Interfraction and intrafraction changes
 - Etc...

Dosimetric Challenges

Volumetric Dosimeters

Moving Forward
Background

- Image-guided radiation therapy (IGRT):
 - Accurate positioning of patients for precise treatments
 - Decrease radiation side effects and improve patient outcomes
Background

- Image-guided radiation therapy (IGRT):
 - kV and MV on-board imagers
 - Cone beam CT (CBCT)
 - Tomotherapy
 - Surface tracking

- However: Internal anatomy not always correlated to bony or surface anatomy

Images courtesy of Ibbott
Background

- However: Internal anatomy not always correlated to bony or surface anatomy
Background

Elekta 1.5 T MRI – 7 MV linac

Sydney 1.0 T MRI – 6 MV linac (inline and perpendicular configurations)

Aurora 0.5 T MRI – 6 MV linac

Viewray 0.35 T MRI – Co-60/6 MV linac
Background

- Integrated 1.5 T Philips MRI – 7 MV Elekta linear accelerator (MR-Linac) system
- Magnetic field (B_0-field) is perpendicular to radiation beam

Images courtesy of University Medical Center Utrecht and Elekta
Background

Images courtesy of Elekta and Ibbott
Dosimetric Challenges

- Magnetic field is perpendicular to radiation beam
- Lorentz force acts on traveling charged particles
- Trajectories of secondary electrons are altered changing the dose distribution
Dosimetric Challenges

- Magnetic field is perpendicular to radiation beam
- Lorentz force acts on traveling charged particles
- Trajectories of secondary electrons are altered changing the dose distribution

Raaijmakers et al. PMB 53 (2008) p913
Electron Return Effect (ERE)

Background

Dosimetric Challenges

Volumetric Dosimeters

Moving Forward

Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons

A J E Raaijmakers, B W Raaymakers and J J W Lagendijk

Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands

O’Brien et al 2017: Monte Carlo study of the chamber-phantom air gap effect in a magnetic field

Figure 6. Schematic simulation setup (a) and energy deposition in the central plane perpendicular to the magnetic field direction for a phantom with an air tube (b).
Challenges

- Practical challenges:
 - No light field
 - Only a sagittal laser
 - Use film or onboard EPID (MV Imager) to position devices (sometimes with addition of BBs)
 - Some sort of rigid platform/holder for daily/weekly/monthly QA measurements
Dosimetric Challenges

- Conventional quality assurance tools provide limited information
 - Point measurements: ion chambers, diodes, TLDs, OSLDs, and etc.
 - Planar measurements: 2D arrays and film
- 1D and 2D measurements can miss dose information occurring in 3D (or 4D including motion and/or time)
- Air-filled detectors and air gaps in solid water and other tools susceptible to electron return effect (ERE)
- Dosimeter arrays are not usually MR compatible
 - Vendors have started to provide MR compatible ion chambers, ArcCheck, Starcheck, and IC Profiler
 - But these devices only provide 1D, 2D, and at best quasi-3D dose information

- 3D dosimeters can address all of these concerns
3D Dosimeter Types

- Radiochromic gel
 - Fricke xylenol orange
 - FOX and rFOX – my gel
 - TruView™ and etc.

- Polymer gel
 - BANANA
 - BANG
 - PAGAT and etc.

- Radiochromic plastic/silicone
 - PRESAGE® and Presage-Def
 - Leuco dye in silicone
 - FlexyDos3D and etc.
3D Dosimeter Types

- Radiochromic gel
 - Fricke xylene orange
 - FOX and rFOX – my gel
 - TruView™ and etc.

- Polymer gel
 - BANANA
 - BANG
 - PAGAT and etc.

- Radiochromic plastic/silicone
 - PRESAGE® and Presage-Def
 - Leuco dye in silicone
 - FlexyDos3D and etc.

\[
\begin{align*}
 H \cdot + O_2 & \rightarrow HO_2 \cdot \\
 HO_2 \cdot + Fe^{2+} & \rightarrow HO_2^- + Fe^{3+} \\
 HO_2^- + H^+ & \rightleftharpoons H_2O_2 \\
 Fe^{2+} + H_2O_2 & \rightarrow Fe^{3+} + HO^- + HO \cdot \\
 Fe^{2+} + HO \cdot & \rightarrow Fe^{3+} + HO^- \\
 G(Fe^{3+}) & = 3G(H \cdot) + G(HO \cdot) + 2G(H_2O_2) \\
 D & = \frac{N_A \cdot e}{\rho \cdot l \cdot G(Fe^{3+})} \cdot \frac{OD(D) - OD(0)}{\varepsilon_m} \\
 D & = \frac{N_A \cdot e}{10 \rho \cdot G(Fe^{3+})} \cdot \frac{R_1(D) - R_1(0)}{r_{eff}^{3+} - r_2^{2+}}
\end{align*}
\]
3D Dosimeter Types

- **Radiochromic gel**
 - Easily created in-house and non-toxic chemicals
 - MR visible changes with irradiation and reusable formulations are possible
 - **Diffusion of signal** — no longer a major concern with MR-guided systems?

- **Polymer gel**
 - Minimal diffusion within 24 hours of irradiation
 - MR visible changes with irradiation
 - Oxygen sensitivity and toxic components

- **Radiochromic plastic/silicone**
 - Minimal diffusion within 24 hours of irradiation
 - Easily created in any shape and minimally toxic chemicals
 - Optical edge artifacts and non-MR-visible signal change
3D Dosimeter Types

- **Radiochromic gel**
 - Easily created in-house and non-toxic chemicals
 - MR visible changes with irradiation and reusable formulations are possible
 - Diffusion of signal – no longer a major concern with MR-guided systems

- **Polymer gel**
 - Minimal diffusion within 24 hours of irradiation
 - MR visible changes with irradiation
 - Oxygen sensitivity and toxic components

- **Radiochromic plastic/silicone**
 - Easily created in any shape and minimally toxic chemicals
 - Optical edge artifacts and non-MR-visible signal change
Electron Return Effect (ERE)

Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons

A J E Raaijmakers, B W Raaymakers and J J W Lagendijk
Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands

Figure 6. Schematic simulation setup (a) and energy deposition in the central plane perpendicular to the magnetic field direction for a phantom with an air tube (b).
Electron Return Effect (ERE)

Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons

A J E Raaijmakers, B W Raaymakers and J J W Lagendijk

Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
Electron Return Effect (ERE)
Electron Return Effect (ERE)

PRESAGE – Radiochromic Plastic

FOX – Radiochromic Gel

Normalized Signal vs. Depth (cm)
Real-time 3D Dose Acquisition

Radiochromic Gel

![Graph showing signal intensity over time for 0° and 270° gantry beam on. The graph indicates linear relationships with equations y = 0.17x + 124.71 (R² = 0.97) for 0° and y = 0.16x + 125.78 (R² = 0.99) for 270°. The graph also shows a comparison between un-irradiated and irradiated regions.]
Real-time 3D Dose Acquisition

Polymer Gel

Difference in Signal Intensities between inside and outside of radiation field
Right field edge

Beam on: 2 min 44 sec

Time [s]
MR and Radiation Isocenter Registration

Radiochromic Gel

Background
Dosimetric Challenges
Volumetric Dosimeters
Moving Forward
End-to-end Testing Workflow

CT → TPS Plan → MRI → Deliver plan and MRI → Compare delivered dose to planned dose
Current Limitations in Testing

- Limitations: pre-clinical system
 - MR and MV isocenter registration
 - MLC calibration

- Currently undergoing upgrades
 - New couch and anterior coil
 - Re-commissioning of MRI and linac components
 - New beam model and cryostat correction for Monaco TPS
End-to-end Testing

- Heterogeneous phantom: retired IROC-Houston head and neck credentialing phantom (mostly water filled)

- Homogeneous phantom: 2 L gel for TG-119 plan testing
End-to-end Testing
End-to-end Testing

Monaco dose
End-to-end Testing
End-to-end Testing
End-to-end Testing
End-to-end Testing: TG-119

MC dose

Gel dose

ArcCHECK-MR dose

Dosimetric Challenges

- **AP PA**
 - Monaco dose: [Image]
 - Gel dose: [Image]
 - ArcCHECK-MR dose: [Image]

- **Multi Target**
 - Monaco dose: [Image]
 - Gel dose: [Image]
 - ArcCHECK-MR dose: [Image]

- **Prostate**
 - Monaco dose: [Image]
 - Gel dose: [Image]
 - ArcCHECK-MR dose: [Image]

- **Head/Neck**
 - Monaco dose: [Image]
 - Gel dose: [Image]
 - ArcCHECK-MR dose: [Image]

- **C-Shape**
 - Monaco dose: [Image]
 - Gel dose: [Image]
 - ArcCHECK-MR dose: [Image]

Volumetric Dosimeters

- **99.1%**
- **96.7%**
- **97.9%**
- **94.3%**
- **94.8%**
- **100.0%**
- **91.6%**
- **94.5%**
- **93.8%**
- **86.8%**

- **7%/4mm**
- **3%/3mm**
Moving Forward

- Motion phantom with deformable gel
 - 4D MRI vs 4D CT
 - Deformable image registration and dose accumulation
- Other tissue-equivalent gels (lung, bone, etc) to create anthropomorphic heterogeneous phantoms
- Post-processing methods to de-noise subtraction MR images for improving dose quantification
Summary

Dosimetric Challenges
- Have to think outside of the box: single laser and no light field
- Devices that are being tested: Ionization chambers, IC Profiler, Starcheck, onboard EPID, ArcCheck, and etc.

Volumetric Dosimeters
- Gel dosimeters can provide valuable 3D dose information and are the only phantoms that can be used for full end-to-end workflow testing
- May be valuable as a training tool prior to patient treatments

Moving Forward
- Continued dosimetry and phantom development including deformation and motion
Thank you!

- Contact: HJLee1@mdanderson.org