Investigation of the energy dependence of W_{air} in high energy electron beams

Alexandra Bourgouin1,2, Claudiu Cojocaru2, Carl Ross2, Malcolm McEwen2

1 - Carleton University, Ottawa, Ontario, K1S 5B6, Canada
2 - Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada

April 16-18, 2018 - NIST, Gaithersburg, MD
CIRMS 2018 Annual Meeting
Radiotherapy clinic: standard dosimetry

Farmer Ion chamber (IC)
The underlying physics

Radiation \rightarrow Loss of energy
The underlying physics

Radiation \rightarrow Loss of energy \rightarrow Ionization of air
The underlying physics

Radiation → Loss of energy → Ionization of air → Charge collection

\[Q_{\text{gas}} \]
Measurement vs quantity of interest

Radiation → Loss of energy → Ionization of air → Charge collection

Q_{gas}

What we are able to measure
Measurement vs quantity of interest

Radiation \rightarrow Loss of energy \rightarrow Ionization of air \rightarrow Charge collection Q_{gas}

Related to the absorbed dose

$$D_{gas} = \frac{\langle d\epsilon \rangle}{dm} \approx \frac{\text{Energy deposited}}{\text{Mass}}$$

What we are able to measure
How to relate them?

Radiation \rightarrow Loss of energy \rightarrow Ionization of air \rightarrow Charge collection Q_{gas}

Related to the absorbed dose

$D_{\text{gas}} = \frac{\langle d\epsilon \rangle}{dm} \approx \frac{\text{Energy deposited}}{\text{Mass}}$ $\propto \frac{Q_{\text{gas}}W_{\text{air}}}{m_{\text{gas}}}$

What we are able to measure

W_{air}
Consensus on W_{air}

Radiation \rightarrow Loss of energy \rightarrow Ionization of air \rightarrow Charge collection

$D_{\text{gas}} \quad \leftarrow \quad W_{\text{air}} \quad \rightarrow \quad Q_{\text{gas}}$

W_{air} is the mean energy required to create ion pair in air
For electron energies well above 10 keV, [...], in the absence of any data to the contrary, W_{air} is taken to be independent of energy.

$W_{\text{air}} = 33.97 \pm 0.12$ eV
Re-analysis of Domen & Lamperti by Tessier et al.

W_{air} (eV)

Electrons energy in air cavity (MeV)

Polynomial fit $\pm \sigma$
Re-analysis D&L by F.T.
ICRU #90 $\pm \sigma$
Re-analysis of Domen & Lamperti by Tessier et al.

Investigate W_{air} value in high energy beam

Electrons energy in air cavity (MeV)

W_{air} (eV)

Polynomial fit ± σ

Re-analysis D&L by F.T.

ICRU #90 ± σ
How can we obtain W_{air}?

$$D_{\text{gas}} = \frac{Q_{\text{gas}}}{m_{\text{gas}}} W_{\text{air}}$$

$$W_{\text{air}} = \frac{D_{\text{gas}} m_{\text{gas}}}{Q_{\text{gas}}}$$
How can we obtain W_{air}?

$$D_{\text{gas}} = \frac{Q_{\text{gas}}}{m_{\text{gas}}} W_{\text{air}}$$

$$W_{\text{air}} = \frac{D_{\text{gas}} m_{\text{gas}}}{Q_{\text{gas}}}$$

Measurement of charge in ion chamber (corrected)
How can we obtain W_{air}?

\[D_{gas} = \frac{Q_{gas}}{m_{gas}} W_{air} \]

\[W_{air} = \frac{D_{gas} \cdot m_{gas}}{Q_{gas}} \]

- Volume x density
- Measurement of charge in ion chamber (corrected)
How can we obtain W_{air}?

\[D_{\text{gas}} = \frac{Q_{\text{gas}}}{m_{\text{gas}}} W_{\text{air}} \]

$W_{\text{air}} = \frac{D_{\text{gas}} m_{\text{gas}}}{Q_{\text{gas}}}$

Hard to measure...

Volume x density

Measurement of charge in ion chamber (corrected)
How can we obtain W_{air}?

\[D_{\text{gas}} = \frac{Q_{\text{gas}}}{m_{\text{gas}}} W_{\text{air}} \]

Calorimetric measurement

\[W_{\text{air}} = \frac{D_{\text{med}} m_{\text{gas}}}{Q_{\text{gas}}} \left(\frac{D_{\text{gas}}}{D_{\text{med}}} \right)^{MC} \]

Monte Carlo
Detector phantom

Graphite Calorimeter within Polystyrene box

Graphite Ion Chamber within Polystyrene box
Radiation set-up

Electron applicator

Al scatterer

Vicker linac

2 beam monitoring IC

1.5 m

2 thimble IC

Graphite Ion Chamber within Polystyrene box

Graphite Calorimeter within Polystyrene box
Variation of configurations

Graphite buildup

Outer **OR** inner to the Styrofoam
Between 0 to 4 cm

Irradiation time

15 or 30 seconds

Electron beam energy

20 and 35 MeV
Results

Electrons energy in air cavity (MeV)

Present work

ICRU, $\chi^2 = 13$, dof=8, $p=0.10$

Poly. fit. D&L, $\chi^2 = 11$, dof=5, $p=0.06$
Results

Electrons energy in air cavity (MeV) vs. W_{air} (eV)

- **Present work**
 - 33.78 ± 0.12 eV
 - 0.56%

- **ICRU**
 - 33.97 ± 0.12 eV
 - $\chi^2 = 13$, dof=8, $p=0.10$

- **Present work avg.**
 - 33.78 ± 0.12 eV
 - $\chi^2 = 3.8$, dof=8, $p=0.88$
Results

Electrons energy in air cavity (MeV)

- Present work
- Poly. fit. D&L, $\chi^2 = 11$, dof=5, $p=0.06$
- ICRU, $\chi^2 = 13$, dof=8, $p=0.10$
- Present work avg., $\chi^2 = 3.8$, dof=8, $p=0.88$
Results

Electrons energy in air cavity (MeV)

- Present work
- Poly. fit. D&L, $\chi^2 = 11$, dof=5, p=0.06
- ICRU, $\chi^2 = 13$, dof=8, p=0.10
- Present work avg., $\chi^2 = 3.8$, dof=8, p=0.88
Results consistent with a constant value of 33.78 ± 0.12 eV

Inconclusive on the energy dependence

Further focus is required:

- Increase number of measurements
- Increase energy range
- Improve uncertainties
Come see my poster for more details

Acknowledgements

Malcolm McEwen
Frédéric Tessier
Ernesto Mainegra-Hing
Claudiu Cojocaru
Carl Ross

Alexandra Bourgouin
PhD student, Carleton university
AlexandraBourgouin@cmail.carleton.ca
www.nrc-cnrc.gc.ca