Rapid Detection of Americium-241 in Food by Inductively-Coupled Plasma Mass Spectrometry

Zhichao Lin, Kathryn Emanuele, Stephanie Healey, and Patrick Regan

Analytical Branch
Winchester Engineering and Analytical Center
Food and Drug Administration

Presentation to 25th Annual CIRMS Conference
National Institute of Standards and Technology
Gaithersburg, Maryland 2017
Outline

- Motivations
- Objectives
- Decay-Counting vs Atom-Counting
- Methodological Challenges
- Experimental Approach
- Sample Preparation
- Instrument Optimization
- Results and Discussions
- Conclusions
- Future Direction
Motivations

- Americium-241 (\(^{241}\text{Am}\)) is a radionuclide of great concern for food safety due to:
 - its long physical half-life
 - harmful ionizing radiation, and
 - potential carcinogenicity

- ID and quantification of \(^{241}\text{Am}\) in food are required by FDA food safety compliance and emergency response programs

- No rapid/sensitive method for detecting \(^{241}\text{Am}\) in food at FDA intervention level of 2 Bq/kg since current radiometric methods are limited by \(^{241}\text{Am}\)’s slow \(\alpha\) decay and low \(\gamma\) emission

- Need a simple and definitive method that can quickly assess level and extent of \(^{241}\text{Am}\) contamination of foods to:
 - assist radiological risk assessment
 - provide prompt protective action after a nuclear or radiological emergency
Objectives

- Adapt FDA’s traditional radiometric-counting methods to faster and more advantageous atom-counting method
- Develop a simple, rapid radiochemical procedure to effectively remove matrix, isobaric, and polyatomic interferences
- Develop a sensitive and robust quadrupole-based ICPMS method able to identify and quantify 241Am in a wide variety of foods
- Provide sufficient sample throughput for response to radiological emergencies involving 241Am
Decay-Counting vs Atom-Counting

For the same amount radioactivity, the number of atoms increases with increasing half-life ($T_{1/2}$) of radionuclide, which makes atom-counting favorable over decay-counting techniques for longer lived radionuclides.

$$\text{Number of atoms} = \frac{\text{Activity}}{0.693} \times T_{1/2}$$

ICP-MS superior to radiometric methods

Decay-Counting vs Atom-Counting

Atom-Counting Favorable

Decay-Counting Favorable

Half-Life of Radionuclide, Year

10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} >10^{8}
Method Challenges

- The FDA’s DIL for 241Am alone is 2 Bq/kg or 15.8 pg/kg

- For detecting 241Am at 1/3 of its FDA’s DIL, limit of detection for the proposed ICPMS method must be $<\sim 5.3$ pg/kg or ~ 5.3 fg/g

- The detection efficiency for our Aridus II desolvating nebulizer and Q-ICP-MS is $\sim 0.01\%$ tandem system

- At 1/3 of FDA’s DIL, a 50 g of food sample will contain ~ 0.3 pg or $\sim 7x10^8$ atoms of 241Am
Method Challenges

Isobaric and Polyatomic Interferences in Analysis of 241Am by ID-ICPMS

Interferences to 241Am (Analyte)

<table>
<thead>
<tr>
<th>Element</th>
<th>Species</th>
<th>Abundance, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pu</td>
<td>241Pu</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>240Pu1H</td>
<td>-</td>
</tr>
<tr>
<td>Bi</td>
<td>209Bi32S</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>209Bi16O$_2$</td>
<td>100</td>
</tr>
<tr>
<td>Pb</td>
<td>204Pb37Cl</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>204Pb37Cl</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>206Pb35Cl</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>207Pb34S</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>208Pb33S</td>
<td>52.4</td>
</tr>
<tr>
<td></td>
<td>208Pb16O$_2$1H</td>
<td>52.4</td>
</tr>
<tr>
<td>Tl</td>
<td>203Tl38Ar</td>
<td>29.52</td>
</tr>
<tr>
<td></td>
<td>205Tl36Ar</td>
<td>70.48</td>
</tr>
<tr>
<td></td>
<td>205Tl36S</td>
<td>70.48</td>
</tr>
<tr>
<td>Hg</td>
<td>201Hg40Ar</td>
<td>13.18</td>
</tr>
<tr>
<td></td>
<td>204Hg37Cl</td>
<td>6.87</td>
</tr>
<tr>
<td>Hf</td>
<td>178Hf14N$_6$O$_3$1H</td>
<td>27.28</td>
</tr>
<tr>
<td></td>
<td>179Hf14N$_6$O$_3$</td>
<td>13.62</td>
</tr>
<tr>
<td>Pt</td>
<td>194Pt14N$_6$O$_2$1H</td>
<td>32.86</td>
</tr>
<tr>
<td></td>
<td>195Pt14N$_6$O$_2$</td>
<td>33.78</td>
</tr>
</tbody>
</table>

Interferences to 243Am (Tracer)

<table>
<thead>
<tr>
<th>Element</th>
<th>Species</th>
<th>Abundance, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>209Bi34S</td>
<td>100</td>
</tr>
<tr>
<td>Pb</td>
<td>206Pb37Cl</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>207Pb36Ar</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>208Pb35Cl</td>
<td>52.4</td>
</tr>
<tr>
<td>Tl</td>
<td>203Tl40Ar</td>
<td>29.52</td>
</tr>
<tr>
<td></td>
<td>205Tl38Ar</td>
<td>70.48</td>
</tr>
</tbody>
</table>

References:

Suresh Kumar Aggarwal, Mass Spectrometry Reviews. 2016 May 6
Experimental Approach

To analyze trace level of 241Am in foods, the MDVP project was conducted with the followings in mind:

- Apply expedited dry/wet ashing to convert Am in food into soluble ionic forms
- Use DGA resin to separate Am from matrix and interferences
- Broaden method applicability by including a wide variety of foods in the study
- Maximize 241Am and 243Am signal intensities by using small sample volumes (~0.5 mL) in ICPMS analysis
- Utilizing a desolvating nebulizer to increase analyte transport and ionization efficiency
Experimental Approach

Instrument Setup

- Concentrate ^{241}Am in small sample volume (~0.5 mL) for ICPMS analysis
- Maximize ^{241}Am ionization efficiency
- Increase ^{241}Am detection sensitivity
- Reduce oxide interferences
- Reduce hydride interferences

CETAC Aridus II Desolvating Nebulizer System

![Aridus II Schematic](image)

Agilent 7700x Q-ICP-MS

![Agilent 7700x Q-ICP-MS](image)
Sample Preparation

Sample Digestion
1. Ash ~50 g of food up to 550 °C
2. Transfer ash to a glass beaker
3. Add known amount of 243Am tracer
4. Boil ash in 20 mL of conc. HNO$_3$ for 40 min
5. Filter sample digest
6. Evaporate filtrate down to ~10 mL

Am Separation
- A. 10 mL of sample digest
- B. 10 mL of conc. HNO$_3$
- C. 10 mL of conc. HNO$_3$+0.2M HF
- D. 15 mL of 0.5M HCl

Bi & Pu are retained by resin

D (Am) Evaporated to dryness then dissolved in 0.5 mL of 5% HNO$_3$ before Q-ICP-MS analysis
Instrument Optimization

- Found maximum analyte signal intensity at plasma power = ~1300 W while using Aridus II desolvating nebulizer
- Observed ~7-fold increase in analyte signal intensity while using Aridus II desolvating nebulizer
- Found $^{241}\text{Am}/^{243}\text{Am}$ ratio was independent of plasma power
- Observed a similar degree of isotope fractionation with or without using Aridus II desolvating nebulizer
Instrument Optimization

- Found the optimum sweep gas flowrate at ~3.5 L/min for Aridus II desolvating nebulizer
- Found the optimum N2 gas flowrate at ~2 L/min for Aridus II desolvating nebulizer
- Found $^{241}\text{Am}/^{243}\text{Am}$ ratio was independent of plasma power
- Observed a similar degree of isotope fractionation with or without using Aridus II desolvating nebulizer
Results and Discussions

Estimated sample completion time and throughput

<table>
<thead>
<tr>
<th>Samples Per batch</th>
<th>Ashing hr</th>
<th>Digestion hr</th>
<th>Separation hr</th>
<th>ICPMS Analysis hr</th>
<th>Total hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>24</td>
<td>1.0</td>
<td>4.0</td>
<td>0.3</td>
<td>29.3</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>1.3</td>
<td>4.5</td>
<td>0.5</td>
<td>30.3</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>1.7</td>
<td>5.0</td>
<td>0.7</td>
<td>31.4</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>2.0</td>
<td>5.5</td>
<td>1.0</td>
<td>32.5</td>
</tr>
</tbody>
</table>

Based on ~50 g of food for each sample

Results and recovery observed with the proposed method procedure

<table>
<thead>
<tr>
<th>Food</th>
<th>Recovery of Am</th>
<th>Known, pg/g</th>
<th>Measured, pg/g</th>
<th>Diff., %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn bread</td>
<td>95%</td>
<td>16.22±0.04</td>
<td>15.8±1.1</td>
<td>-2.6</td>
</tr>
<tr>
<td>Ground beef</td>
<td>94%</td>
<td>16.22±0.04</td>
<td>16.1±1.2</td>
<td>-0.7</td>
</tr>
<tr>
<td>Chicken pot pie</td>
<td>92%</td>
<td>16.22±0.04</td>
<td>15.7±0.9</td>
<td>-3.2</td>
</tr>
<tr>
<td>American cheese</td>
<td>90%</td>
<td>16.22±0.04</td>
<td>16.7±1.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Spinach</td>
<td>91%</td>
<td>16.22±0.04</td>
<td>17.2±1.2</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Uncertainty is estimated at 95% confidence level
Results and Discussions

Comparison of limit of detections

Limit of detection for ^{241}Am was estimated using linear regression analysis:

$$\text{LOD}_{\text{Am}} = 3S_{y/x} + b$$

Where,

- $S_{y/x}$ = Standard error of the regression
- b = Intercept

For analysis of ~50 grams of food:

- LOD = 4.8 pg/kg without Aridus II
- LOD = 2.1 pg/kg with Aridus II

The proposed method meets the detection limit requirement of 5.3 pg/kg
Conclusions

The preliminary study demonstrated:

- The proposed method provides sensitive and definitive detection of 241Am in foods.
- The limit of detection for 241Am was estimated to be ~ 2.1 pg/kg or 0.27 Bq/kg, which is ~ 7 times below its FDA’s derived intervention level.
- Analysis of a batch of 16 samples can be completed in ~ 32 hours after sample receiving.
- The method accuracy was found to be better than ±10%.
- Despite that the method presented an alternative approach for analyzing 241Am in foods, additional studies on the method performance characteristics are still needed before official use.
Looking Ahead

- Evaluate method readability and reproducibility at target level
- Conduct a matrix extension study to demonstrate method applicability for a wide variety of foods
- Reduce sample preparation time by adapting wet ashing to mineralizing food samples
- Reduce Am separation time by using vacuum assisted chromatographic column
- Further improve method sensitivity, accuracy, and precision with high resolution ICPMS
Disclaimer

Reference to any commercial materials, equipment, or process does not, in any way, constitute approval, endorsement, or recommendation by the U.S. Food and Drug Administration.

All views and opinions expressed throughout this presentation are those of the presenter and do not necessarily represent views or official position of U.S. Food and Drug Administration.
Thank you!

Any questions?