NIST High-Dose Program
Calibration Services

Lonnie T. Cumberland, Ph.D.
Ionizing Radiation Division
Physics Laboratory
National Institute of Standards and Technology
U. S. Department of Commerce
NIST High-Dose Program
Calibration Services

The Ionizing Radiation Division maintains the U.S. standard for high-dose dosimetry (20 - 100,000 Gy)

- Vaccines
- Food Irradiations & many other areas
- Medical Product Sterilization
The gray is realized by a water calorimeter in the Vertical Beam gamma-ray field.

SI unit for dose:
Gray (Gy)

1 Gray = 1 Joule/kg
Alanine Dosimetry

- Composed of alanine crystals dispersed in a polymer binder, these dosimeters are considered to be accurate, versatile and robust.
Alanine Dosimetry

- High accuracy/precision
- Rugged / can be put in materials and shaped
- Commercially available
- Relatively insensitive to environmental influences
 - Time
 - Temperature
 - Humidity
 - Light
 - Energy/Quality
 - Rate
- Long lifetime
 - decays a few % / y
 - archival
- Broad dose range
 - 2 Gy to 200 kGy
- Tissue equivalent
- No readout treatment required
- ASTM/ISO standard
Alanine Dosimetry

- Alanine irradiation with ionizing radiation causes the production of radicals
 - \# radicals \(\propto \) dose absorbed over a wide dose range
 - Tissue equivalent
- The crystalline structure of the material counteracts the recombination of radicals
NIST High-Dose Program
Calibration Services

- The alanine system is calibrated with NIST gamma sources

- The dosimeters are measured by Electron Paramagnetic Resonance (EPR) and referenced to an EPR standard

- The calibration curve is monitored with check standards
NIST High-Dose Program Calibration Services

• **Dosimeter calibrations**
 – Irradiation of customer-supplied dosimeters to customer-specified doses

• **Transfer dosimetry**
 – NIST-supplied dosimeters are irradiated by customers
 – NIST reads and certifies dosimeter doses

• **Special measurements**
NIST Irradiators

Medium Dose Gammacell ("Huey")

Pool Source ("Dewey")

Low Dose Gammacell ("Louie")

High Dose Gammacell ("Daisy")
Electron Paramagnetic Resonance (EPR)
Electron Paramagnetic Resonance (EPR) Standards

- EPR measurement precision is greatly improved by using EPR reference standards (ruby) to correct for spectrometer fluctuations and environmental influences.

- Apply strong B-field to material.

- Orients unpaired e-'s tend to spin parallel or antiparallel to B-field.

- Creates distinct E levels for these e-'s
 - Net absorption of EM radiation (microwaves) to occur.
Industrial Dose Certification

- Industrial radiation processors use NIST services for process validation and dosimetry certification.
NIST High-Dose Program
Current Status and Future Prospects

His expertise will be missed, but not forgotten……

Retired after 27 years of service.

We wish Dr. Marc Desrosiers the best success and a most enjoyable retirement for many years to come
The new “NIST High-Dose Program” integrates all of our Irradiation Calibration and Transfer Dosimetry services into a single comprehensive High-Dose program in which team members cross-trained to run all of the services which allow for multi-level service coverage redundancy to better support our customers.
NIST High-Dose Program

Thank You
Alanine Radical Chemistry

- Studies indicate that the alanine EPR spectrum may be a composite of mainly three different radical spectra
- The observed effects with dose rate may result from a change in the relative abundance of these radicals

Alanine is an amino acid (HO2CCH(NH2)CH3)

When exposed to ionizing radiation:

1. Alanine becomes the free radical (CH3C•HCOO–) and is stable
2. Due to its stability, the yield of free radicals is measured and is proportional to the dose of radiation absorbed
Time & Conditions

Since the ruby signal mimics the spectrometer sensitivity characteristics, measuring the alanine signal in tandem with the ruby allows us to “subtract out” spectrometer fluctuations by plotting the ratio of the two signals.
Compensating for Relative Humidity

- Although the RH, as well as the change in RH, has significant effects on the dosimeter response, there is no effect on the ala/ruby ratio.
Temperature

• The change in alanine signal with temperature is linear and ~0.1% per degC

• The coefficient does change slightly with dose